是否支持加工定制否
测量参数3D CT扫描
扫描长度根据样品尺寸可调(较大支持800×500)
重量2100
系统重新配置时间60s
载料口尺寸690x650mm(或380mm×200mm,根据配置不同)
观察窗尺寸520x370mm
监视器尺寸24”超锐利宽屏
操控方式鼠标或摇杆
探测器倾斜角+/-70°(140°)
防震动方式空气气垫防震
辐射泄漏量1μSv/h(或符合安全标准,具体数值根据设备校准)
蔡司工业CT(计算机断层扫描)技术是一种非破坏性检测方法,广泛应用于多个工业领域。其高精度和高分辨率的特点使其成为质量控制和产品研发的重要工具。以下是蔡司工业CT的一些主要应用:
1. 质量控制与缺陷检测:蔡司工业CT能够对复杂零件进行全面的内部和外部检测,识别微小的缺陷,如裂纹、气孔、夹杂物等,确保产品符合量标准。
2. 尺寸测量与几何分析:通过CT扫描,可以获取零件的三维模型,进行的尺寸测量和几何分析,包括壁厚、孔位、曲面等复杂特征的测量。
3. 逆向工程:蔡司工业CT可以用于获有零件的三维数据,帮助进行逆向工程设计,特别适用于没有原始设计图纸的情况。
4. 材料分析:CT技术可以用于分析材料的内部结构,如孔隙率、纤维取向、复合材料的分层等,为材料研究和开发提供重要数据。
5. 装配与配合分析:通过CT扫描,可以检查零件在装配状态下的配合情况,识别潜在的装配问题,如间隙、干涉等。
6. 失效分析:在零件失效的情况下,CT技术可以帮助分析失效原因,通过内部结构的详细检查,找出导致失效的缺陷或损坏。
7. 增材制造(3D打印):蔡司工业CT在增材制造中用于检测打印件的内部质量,如层间结合、孔隙分布等,确保打印件的性能和可靠性。
8. 模具与铸造:在模具和铸造行业中,CT技术用于检测模具和铸件的内部缺陷,如缩孔、裂纹等,提高产品质量和生产效率。
9. 电子与半导体:蔡司工业CT在电子和半导体行业中用于检测芯片、封装和PCB的内部结构,确保产品的可靠性和性能。
10. 与生物工程:虽然主要用于工业领域,蔡司工业CT技术也可以应用于和生物工程领域,如器械的检测和生物材料的研究。
蔡司工业CT技术的广泛应用使其成为现代制造业中的工具,帮助企业提高产品质量、降低生产成本并加速产品开发周期。
内部扫描分析的特点主要包括以下几个方面:
1. 全面性:内部扫描分析通常涵盖组织的各个方面,包括资源、能力、文化、结构等,以确保分析的全面性和系统性。
2. 深度性:通过深入挖掘组织内部的数据和信息,内部扫描分析能够揭示潜在的问题和机会,提供深层次的洞察。
3. 针对性:分析过程会根据组织的具体需求和目标进行定制,确保分析结果具有针对性和实用性。
4. 数据驱动:内部扫描分析依赖于大量的,通过数据分析和建模来支持决策,提高分析的准确性和可靠性。
5. 持续改进:内部扫描分析是一个持续的过程,通过定期进行,帮助组织不断优化和改进内部运作。
6. 保密性:由于涉及组织内部的敏感信息,内部扫描分析通常需要严格的保密措施,确保数据的安全性和隐私性。
7. 跨部门协作:分析过程通常需要多个部门的协作,以确保信息的全面性和准确性,促进跨部门的沟通和合作。
8. 战略导向:内部扫描分析的结果通常用于支持战略决策,帮助组织识别优势和劣势,制定有效的战略计划。
9. 灵活性:内部扫描分析可以根据组织的变化和需求进行调整,具有较高的灵活性和适应性。
10. 资源优化:通过识别内部资源的利用情况和潜力,内部扫描分析有助于优化资源配置,提率和效益。

失效分析的特点主要包括以下几个方面:
1. 系统性:失效分析通常采用系统化的方法,从整体到局部逐步排查,确保不遗漏可能的失效原因。
2. 多学科性:失效分析涉及多个学科领域,如材料科学、力学、化学、电子学等,需要跨学科的知识和技能。
3. 细致性:失效分析要求对失效现象进行细致的观察和记录,包括失效部位的外观、尺寸、颜色、形态等。
4. 逻辑性:分析过程中需要运用逻辑推理,通过排除法、对比法等方法,逐步缩小失效原因的范围。
5. 实验性:失效分析往往需要通过实验手段来验证假设,如金相分析、断口分析、无损检测等。
6. 数据驱动:分析过程中需要依赖大量的数据和信息,包括历史数据、测试数据、现场记录等,以确保分析的准确性和可靠性。
7. 预防性:失效分析的终目的是找出失效原因并提出改进措施,以防止类似失效的再次发生。
8. 复杂性:失效原因可能是多方面的,涉及设计、制造、使用、维护等多个环节,分析过程往往较为复杂。
9. 时效性:失效分析通常需要在失效发生后尽快进行,以避免证据丢失或失效模式发生变化。
10. 经济性:失效分析需要考虑成本效益,既要找出失效原因,又要控制分析成本,避免过度分析。
这些特点使得失效分析成为一项复杂而重要的工作,对于提高产品质量和可靠性具有重要意义。

工业CT断层扫描的特点主要包括以下几个方面:
1. 高分辨率:工业CT能够提供高的空间分辨率,可以清晰地显示被检测物体的内部结构细节,包括微小的缺陷和特征。
2. 无损检测:与传统的破坏性检测方法不同,工业CT扫描是一种无损检测技术,可以在不破坏样品的情况下获取其内部信息。
3. 三维成像:工业CT能够生成被检测物体的三维立体图像,提供全面的内部结构信息,有助于更准确地分析和评估。
4. 多材料适用性:工业CT适用于多种材料的检测,包括金属、塑料、陶瓷、复合材料等,具有较强的通用性。
5. 定量分析:通过工业CT扫描,可以进行的尺寸测量、密度分析和缺陷定量,为质量控制提供可靠的数据支持。
6. 复杂结构检测:工业CT能够检测复杂形状和结构的物体,对于传统方法难以检测的部件,如内部空腔、复杂几何形状等,具有显著优势。
7. 快速扫描:现代工业CT设备具备快速扫描能力,可以在较短时间内完成大体积或高精度要求的检测任务。
8. 自动化程度高:工业CT系统通常配备自动化操作和数据分析软件,可以实现、重复性好的检测流程。
9. 安全性:工业CT扫描过程中使用的X射线剂量较低,对操作人员和环境的影响较小,具有较高的安全性。
10. 应用广泛:工业CT在、汽车制造、电子工业、考古学、材料科学等多个领域都有广泛应用,能够满足不业的检测需求。
这些特点使得工业CT断层扫描成为一种强大而灵活的检测工具,在现代工业生产和科学研究中发挥着重要作用。

工业CT(计算机断层扫描)是一种的无损检测技术,具有以下特点:
1. 高分辨率:能够提供高精度的三维图像,清晰地显示被测物体的内部结构。
2. 无损检测:无需破坏被测物体即可获取其内部信息,适用于精密部件的检测。
3. 三维成像:能够生成被测物体的三维立体图像,便于分析。
4. 应用广泛:适用于、汽车制造、电子元件、材料科学等多个领域。
5. 测量:可以测量内部缺陷、尺寸和形状,提供定量分析数据。
6. 快速扫描:现代工业CT设备具备快速扫描能力,提高检测效率。
7. 适应性强:能够检测材料,包括金属、塑料、陶瓷等。
8. 数据可追溯:检测结果可以保存和追溯,便于后续分析和质量控制。
工业CT技术在产品质量控制、失效分析和研发过程中发挥着重要作用。
孔隙率检测适用于多种材料和领域,包括但不限于以下范围:
1. 建筑材料:如混凝土、砖块、石材等,用于评估其密实性和耐久性。
2. 地质勘探:用于岩石、土壤等地质材料的孔隙率测定,帮助分析地质结构和储层特性。
3. 陶瓷与耐火材料:检测陶瓷制品和耐火材料的孔隙率,以评估其强度和耐热性能。
4. 金属材料:在金属铸造和粉末冶金中,检测金属材料的孔隙率,确保其力学性能。
5. 复合材料:如碳纤维复合材料、玻璃钢等,用于评估其内部结构均匀性和性能。
6. 过滤材料:如滤纸、滤膜等,检测其孔隙率以确定过滤效率。
7. 能源材料:如电池隔膜、催化剂载体等,用于优化其孔隙结构以提高性能。
8. 生物材料:如骨组织工程支架、人工骨等,评估其孔隙率以促进细胞生长和营养输送。
9. 环保材料:如吸附剂、催化剂等,检测其孔隙率以提升污染物吸附和降解效率。
孔隙率检测在这些领域中具有重要意义,能够帮助优化材料性能、提高产品质量和推动技术创新。
http://www.shyj188.com